2.2: Set Operations (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    4869
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Complement of Sets

    Definition: Complement

    The complement of a set is another set which contains only elements not found in the first set.

    Let \(A\) be a set.

    \(A\)c = \(\{x \mid x \notin A\}\)

    We write c to denote a complementary set.

    Often, the context provides a "universe" of all possible elements pertinent to a given discussion. Suppose we have given such a set of "all" elements. Let us call it \(U\). Then, the complement of a set \(A\), denoted by \(A^c\), is defined as \(A^c = U - A\). In our work with sets, the existence of a universal set \(U\) is tacitly assumed.

    Example \(\PageIndex{1}\)

    Consider \(\mathbb{Q}\) and \(\mathbb{Q}\)c, the sets of rational and irrational numbers, respectively:

    \(x \in \mathbb{Q} \to x \notin \mathbb{Q}\)c, since a number cannot be both rational and irrational.

    So, the sets of rational and irrational numbers are complements of each other.

    Union

    Definition: Union

    A union of two sets creates a "united" set containing all terms from both sets.

    \(A \cup B = \{x \mid (x \in A) \vee (x \in B)\}\)

    2.2: Set Operations (2)

    Example \(\PageIndex{2}\)

    Let \(A = \{1, 3, 5\}\) and \(B = \{2, 4, 6\}\)

    Then \(A \cup B = \{1, 2, 3, 4, 5, 6 \}\)

    Intersection

    Definition: Intersection

    The intersection of two sets creates a set with elements that are in both sets.

    \(A \cap B = \{x \mid (x \in A) \wedge (x \in B)\}\)

    2.2: Set Operations (3)

    Example \(\PageIndex{3}\)

    Let \(A = \{8, 12, \frac{3}{7}, -22\}\) and \(B = \{8 675 309, 42, 12, 8, 57\}\)

    Then \(A \cap B = \{8, 12\}\)

    Set Difference

    Definition: Set difference

    The difference between two sets generates a set which has no elements of the second set.

    \(A - B = \{x \mid (x \in A) \wedge (x \notin B)\}\)

    2.2: Set Operations (4)

    Example \(\PageIndex{4}\)

    Let \(A = \{8, 12, \frac{3}{7}, -22\}\) and \(B = \{8 675 309, 42, 12, 8, 57\}\).

    Then \(A - B = \{\frac{3}{7}, -22\}\)

    The Empty Set

    Definition: Empty set

    The empty set is a set that has no elements. It is written \(\{\}\) or \(\emptyset\).

    \(\emptyset \subseteq A\), for any set A

    The empty set has just one subset, which is itself. The empty set is also a subset of every set, since a set with no elements naturally fits into any set with elements.

    Disjoints

    Definition: Disjoint sets

    A and B are called disjoints if \(A \cap B = \emptyset\).

    Example \(\PageIndex{5}\)

    Consider sets \(\mathbb{Q}\) and \(\mathbb{Q}\)c:

    Since \(\mathbb{Q} \cap \mathbb{Q}\)c \(= \emptyset\), these sets are called disjoints.

    Cartesian Product

    Definition: Cartesian products

    The so-called Cartesian product of sets is a powerful and ubiquitous method to construct new sets out of old ones.

    Let \(A\) and \(B\) be sets. Then the Cartesian product of \(A\) and \(B\), denoted by \(A \times B\), is the set of all ordered pairs \((a, b),\) with \(a \in A\) and \(b \in B.\) In other words,

    \[A \times B = \{(a, b) ~|~ a \in A, b \in B\} .\]

    An important example of this construction is the Euclidean plane \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}\). It is not an accident that \(x\) and \(y\) in the pair \((x, y)\) are called the Cartesian coordinates of the point \((x, y)\) in the plane.

    Example \(\PageIndex{6}\)

    Let \(A = \{2, 4, 6, 8\}\) and \(B = \{1, 3, 5, 7\}\). then

    \(A \times B = \{(2, 1), (4, 3), (6, 5), (8, 7)\}\)

    2.2:  Set Operations (2024)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Kelle Weber

    Last Updated:

    Views: 6486

    Rating: 4.2 / 5 (53 voted)

    Reviews: 92% of readers found this page helpful

    Author information

    Name: Kelle Weber

    Birthday: 2000-08-05

    Address: 6796 Juan Square, Markfort, MN 58988

    Phone: +8215934114615

    Job: Hospitality Director

    Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

    Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.